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I. Phys. A: Math. Gen. 25 (1992) 4127-4137. Printed in the UK 

Non-algebraic domain growth in binary alloys with 
quenched disorder 

Sanjay Puri t i  and Nita Parekht 
t School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India 
i Institut fur  Physik, Johannes-Gutenberg Universitl Mainz, 6500 Maim 1, Federal 
Republic of Germany 

Abstract. We present detailed numerical results from a computationally eficient cell 
dynamical system (CDS) model of domain growth in binary alloys with quenched disorder. 
Our numerical resulu suggest that the domain growth law for the disordered ease is 
~mpat ib lewi th(R)( i ) - ( ln  t)l: where x hasaweakdependenceon thedisarderamplitude. 
However, it is possible that our simulations do not access the true asymptotic regime. We 
also find that the scaled structure factor far the disordered case is independent of the 
amplitude of disorder and is the same as that for the pure system. 

1. Introduction 

Much recent attention has focused on the dynamics of phase ordering; namely, the 
mechanisms whereby a binary system, rendered thermodynamically unstable by 
quenching, orders into distinct phases [ 11. It is now well established that, for pure 
systems, the ordering process is characterized by a unique length scale R ( t )  (where f 
is the time). This length scale shows a power-law growth in time, i.e. R ( t ) -  I", where 
@ is referred to as the growth exponent. For the case of a non-conserved order parameter 
(e.g. ordering of a ferromagnet), it is known that 4 = f .  This result has been established 
experimentally, numerically and theoretically [l]. For the case of a conserved order 
parameter without hydrodynamic effects (e.g. segregation of a binary alloy), we know 
that @ = $  [I]. This result was experimentally known and theoretically expected for 
some time. However, it was well established numerically only after the advent of 
computationally efficient cell dynamical system (CDS) models [2]. Finally, for the case 
of a conserved order parameter with hydrodynamic effects (e.g. segregation of a binary 
fluid), it has been experimentally and theoretically believed that @ = 1 [ 11. Numerically, 
this has only been demonstrated very recently [31, again with the use of CDS models. 

Domain growth laws in the case of a conserved order parameter have been the 
cause of a fair amount of numerical controversy and much effort has been devoted to 
conclusively establish the above results. As a consequence, less attention has been paid 
to more realistic situations, e.g. phase ordering dynamics in systems with quenched or 
anneaied disorder [4j.  in an attempt to understand the roie piayed by quenched 
disorder in affecting the dynamics of phase ordering, we have initiated an investigation 
of CDS models with disorder [5]. Our experience shows that coarse-grained models 
have been considerably more successful numerically than microscopic models in 
elucidating the nature of domain growth in pure systems. However, to the best of our 
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knowledge, all previous numerical studies of domain growth in disordered systems 
have used microscopic models with Monte Carlo dynamics [4]. We believe that our 
coarse-grained models will be useful in extracting the asymptotic behaviour of domain 
growth in systems with quenched disorder. In a previous letter [SI we reported numerical 
results for the case of a non-conserved CDS model with quenched disorder, which is 
expected to mimic domain growth in a random exchange king magnet. In this paper 
we elaborate on our modelling and report detailed numerical results for the case of a 
disordered CES mode! with c o ~ s e ~ e d  d e :  pa:atx!e:, which is expec:ed :a mimic a 
binary alloy with quenched disorder (e.g. immobile vacancies). 

This paper is organized as follows. In section 2, we describe our CDS models and 
briefly summarize the numerical results obtained for the non-conserved case [SI. In 
section 3, we describe our results for the case of the conserved order parameter. In 
section 4, we end with a summary and discussion. 

S Furi and N Parekh 

2. Cell dynamical system models with disorder 

The starting point of our modelling is the time-dependent Ginzburg-Landau (TDGL) 

equation, which describes the temporal evolution of a system described by a non- 
conserved order parameter (e.g. a coarse-grained version of the king model with 
Glauber kinetics [7]) 

In (2.1), $(r, t) is the scalar order parameter at  point r and time f ;  and L is a 
phenomenological parameter. For the pure king model, the coarse-grained free-energy 
functional H[#(r, t)] in (2.1) is usually taken to be of the 4' form 

H[#(r, [)]=I dr [  -$#(r,  f ) 2 + p # ( r , f ) ' + - ( ( C # ( r , f ) ) 2 ]  K (2.2) 

where T, g and K are phenomenological constants which respectively measure the 
temperature T ( T - ( T ~ -  T ) ,  where T, is the critical temperature); the coupling con- 
stant; and the interfacial energy. The Gaussian white noise u ( r ,  f)  satisfies the fluctu- 
ation-dissipation relation 

(2.3) 

where we have taken the Boltzmann constant to be unity. The TDGL equation corres- 
ponding to the free-energy functional (2.2) (usually referred to as model A [SI) is then 

4 2 

(u(r, t)u(r', 1')) = 2TL6(r- r')8(t - 1'1 

aJl(r,=LIT#(r, f ) - g # ( r ,  f)'+KV2#(r,f)]+u(r,t) .  (2.4) 
J t  

For the case of the king model with quenched impurities (e.g. site dilution or 
randomization of exchange interactions), the coarse-grained free-energy functional is 
usually taken to be of the form [9] 

SO that the phenomenological measures of the various parameters assume a spatial 
dependence. The spatial dependence is of the form of a random Gaussian fluctuation 
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about a constant average, e.g. T(r )  = T ~ +  ST(r), g ( r )  = g o +  Sg( r )  and so on. Then, the 
TDGL equation corresponding to ( 2 . 5 )  describes the dynamics of the coarse-grained 
version of the random exchange king model (REIM).  (This conclusion is supported 
by a derivation of the coarse-grained kinetic equation by applying the master equation 
approach [ 7 ]  to the REIM [ l o ] . )  For simplicity, we confine ourselves to the case where 
the interfacial energy is not spatially varying, i.e. K( r )  K .  This restriction only affects 
the precise form of the interface between domains and does not change asymptotic 
results, which are independent of the precise form of the interface. Thus, we consider 
the TDCL equation 

The corresponding partial differential equation for the temporal evolution of a binary 
alloy with quenched disorder (e.g. immobile vacancies) is 

L p [ T ( r ) $ ( r ,  1) - g ( r ) $ ( r ,  t)’+KV’+(r,  t ) l + . f ( r ,  1 ) .  (2.7) 

Equation (2.7) is a generalization of the Cahn-Hillard-Cook equation [ 111, which 
describes the evolution of a pure binary alloy undergoing phase segregation. This 
phenomenological equation can be motivated [ l o ]  by applying the master equation 
approach [ 7 ]  to the REIM with Kawasaki kinetics, which is the appropriate microscopic 
model for this case. In (2.71, the noisef(r, t )  is Gaussian with mean zero and satisfies 
the fluctuation-dissipation relation 

(2.8) 
We next rescale (2.7) and cast it in a dimensionless form, which is more convenient 
to deal with. We rescale as follows: 

J$(r ,  1) __=-  
J f  

( f ( r ,  t ) f ( r ‘ ,  1 ’ ) )  = -2TLV2S(r- r ’ )S( t -1’ ) .  

r =  E r ’  

K 
1 =- f‘ 

LT? 

The corresponding dimensionless form of (2.7) is (dropping the primes) 

__- I ) -  -V2[(1 + & z ( r ) ) $ ( r ,  [ ) - ( I  + Sb(r ) )@(r ,  I ) ~ + V * $ ( ~ ,  t)]+&O(r, I )  (2.10) 
Jt 

where Sa(r) = ST(r)/To and Sb(r )  = S g ( r ) / g ,  are random Gaussian fluctuations about 
zero. In (2.10) 

and O(r, I )  is a Gaussian white noise which satisfies 

(O(r,  t)O(r’,  1 ’ ) )  = - V 6 (  r - r W (  t - 1 ’ ) .  

(2.11) 

(2.12) 
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In [ 5 ]  we proposed a computationally efficient CDS model which mimics the dynamics 
of (2.6). The prescription for obtaining such models for reaction-diEusion equations 
has been extensively discussed in the literature [2] and we do  not repeat it here. Briefly, 
the basic idea of this modelling is to directly integrate the deterministic local part (i.e., 
the 'reaction' part) of the reaction-diffusion equation. This solution is then used to 
construct a new numerical scheme for the reaction-diffusion equation. The major 
advantage of this new scheme is that it enables the use of rather coarse mesh sizes to 
simulate the partial differential equation [12]. We do not go into further details of the 
procedure here. Rather, we directly write down the CDS model that mimics the dynamics 
of the appropriate dimensionless form of (2.6) [2] 

S ft" and N Parekh 

At 
(Ax)' = G,($(r ,  [I)+- A D $ ( r ,  t ) + & A M r ,  1)  

where A t  and Ax are the mesh sizes in time and space respectively; and 

(2.13) 

(2.14) 

In (2.13), A D  is the isotropically discretized Laplacian operator at the discrete lattice 
point r and p ( r ,  1) is the dimensionless counterpart of the Gaussian noise u ( r ,  t ) .  
Using the robustness of cell dynamical modelling and the insensitivity of results to 
the precise form of the local relaxation function G,(x) [2], we can replace G,(x) by 
the piecewise linear function 

a ( r )  
Ix"A(r) = a ( r )  sgn(x) (2.15) 

This piecewise linear function ensures a more rapid relaxation to the local fixed points, 
thereby enabling quicker access t o  the asymptotic regime. Thus, we have the required 
computationally efficient CDS model [5] 

At 
$(r, f+At )=L($( r ,  t ) ) + ( p x ) Z A d ( r ,  [)+&At&, t ) .  (2.16) 

Equation (2.16) can be written in the manifestly discrete form 

$(r ,  t+l)=L($(r,  DAD$(^, f ) + B d r ,  t )  (2.17) 

where the time is incremented in discrete steps; D = A f / ( A x ) ' ;  and B=&At.  
For the case with conserved order parameter, we desire to construct the CDS model 

which mimics the dynamics of (2.10). In the continuum case, the partial differential 
equation which describes the case with conserved order parameter is naively obtained 
by appending a (-V') operator to the chemical potential in the TDCL equation. The 
required CDS model for the conserved dynamics is obtained analogously [2] from 
(2.17) as 
~ ( r , t + l ) = $ ( r , t ) - A D t L ( $ ( r ,  t ) ) - $ ( r , ~ ) + ~ A D $ ( r , ~ ) l + B ~ L ( r . f )  (2.18) 
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where (again) the time f is incremented in discrete steps. This is the CDS model we 
have used to obtain the two-dimensional results described in this paper. 

There are five parameters in our model, namely, the constants A,( = e"') and D ;  
the noise amplitude B ;  and the amplitudes of the two disorder terms 6u(r)  and Sb(r) .  
The choice of parameters is dictated by the twin requirements that ( U )  the scheme 
(2.18) be numerically stable; and ( b )  the results obtained be reasonable [2]. We use 
the parameter values A,= 1.3 and D=O.125, which have proved appropriate for the 
case without disorder [2]. Before we proceed, some discussion of this choice of values 
for A, and D is in order. Essentially, the values of A, and D affect only the width of 
the interface between the domains and not the bulk of the domains. Asymptotically, 
the width of the interface (which is constant in time) is an irrelevant variable compared 
to the characteristic domain size (which grows in time). Thus, the only effect of the 
interface width is to introduce non-universal features in the scaled structure factors at 
ear!y times, Asymptntically, scaled structure factors are independent of the interface 
width and, consequently, independent of the values of A, and D. This has been 
confirmed for the case without disorder [2] and we have also verified it for the case 
with disorder, though we do not present detailed results here. The asymptotic results 
presented below are independent of the values of A, and D over a broad range of values. 

The choice of noise amplitude raises some important questions, in the case of 
segregation in pure alloys, the presence of noise only affects the smoothness of the 
interface between the domains. With the passage of time, the interface thickness (or 
raggedness) is irrelevant in comparison to the characteristic domain size. Therefore, 
for pure systems, noise is an irrelevant variable asymptotically and this has been also 
demonstrated numerically [2]. However, domain growth in disordered systems is driven 
by the thermally assisted hopping of energy barriers created by the disorder traps [6]. 
In our coarse-grained models, this probabilistic hopping is incorporated even in the 
deterministic models as a consequence of the probabilities in the master equation [7]. 
Thus, we expect that the effects of disorder and the appropriate slowing down will 
show up in the deterministic model also. As a matter of fact, our numerical simulations 
show that non-algebraic domain growth is seen in the deterministiccase also. However, 
the deterministic case is plagued by freezing effects and it is difficult to get domain 
growth over extended periods of time. Thus, we choose a non-zero noise amplitude 
(B = 0.3) for our simuiations. Numericaiiy, we choose noise to be uniformiy distributed 
between -0.3 and 0.3. (For completeness, we have also done simulations with Gaussian 
distributed noise. The results are identical to those presented here. Furthermore, 
different noise amplitudes give similar growth to those described here. We do not 
present these results.) 

Finally, for simplicity, we choose the disorder amplitudes to be equal. The results 

-C and +C, where we will specify the different values of C subsequently. Again, for 
completeness, we have also performed simulations in which the disorder is Gaussian 
distributed. The results are identical to those presented here and, hence, we do not 
present the results for Gaussian distributed disorder. 

1~~ ~ ~ ~ I I ~  ~ 1 1 ~  ~ ~~ P.. -L.  _... ... L.-- e...\ -...I PI,.., ---..-:c- _-,.. ?l:...-:L ..... _I L aescnoeu nere are [or  me case W I L B L C  O U { ~ J  aiiu U U { ~ J  air: urirruiriiry UIJLLLVULCU VCLWCCII 

3. Numerical results 

We have implemented the scheme (2.18) on a 128 x 128 lattice with periodic boundary 
conditions. The quantity usually calculated is the time-dependent structure factor, 
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which is defined as 

S Pun‘ and N Parekh 

S(k, 1 )  = [ ( $ ( k ,  t ) $ ( k ,  t)*)l 

where $(k ,  1 )  is the Fourier transform of +(r,  t )  on the discrete lattice; the angular 
brackets denote an averaging over different initial conditions; the square brackets 
denote an averaging over different disorder configurations; and the * denotes complex 
conjugation. The wavevectors k take up the discrete values 2 m ( k x ,  ky) /128,  where k, 
and ky range from 1 to 128. For each fixed configuration of disorder, we obtain structure 
factors as averages over 20 different initial conditions. Then, we average over (typically) 
20 different configurations of disorder. The time-dependent structures factors are 
circularly averaged to give the scalar function S(k, t ) ,  which will be shown in subsequent 
figures. The characteristic domain size ( R ) ( t )  is defined as the reciprocal of the fint 
moment of the scalarized structure factor, i.e. ( R ) ( t )  = ( k ) ( f ) - l ,  where ( k ) ( f )  is defined 
as 

where k,  is the magnitude of the largest wavevector we consider. The results presented 
here are for k, equal to half the magnitude of the largest wavevector lying in the 
Brillouin zone of the lattice. The characteristic length scale thus measured is in units 
of the iattice spacing. 

Before we proceed to describe our results for the conserved case, let us briefly 
recapitulate our numerical results [ 5 ]  for the non-conserved case, i.e. the case of a 
random magnet. We had made two relevant observations. Firstly, the process of domain 
growth was characterized by a single length scale ( R ) ( t ) ,  which had a non-algebraic 
temporal dependence. Our results indicated that the Huse-Henley prediction [6] 
( ( R ) ( t )  - (In t)4 in two dimensions) was valid over a limited range of disorder ampli- 
tudes. For higher values of disorder, slower growth was seen hut this could well have 
been because of the freezing of domain growth at higher amplitudes of disorder. In 
spite of our extensive simulations, it was rather difficult to extract the domain growth 
law conclusively from the numerical data. Secondly, we found that the dynamical 
structure factor had a universal scaling form which was independent of the disorder 
amplitude. Our numerical results were very clear in this regard and we found that the 
scaled structure factors for different amplitudes of disorder coincided even in the tail 
region. 

Let us now describe our results for segregation in a binary alloy with quenched 
disorder. Figure 1 shows the characteristic domain size ( ( R ) ( t ) )  as a function of the 
update time 1. In this figure, we have plotted ( R ) ( f ) ’  versus t, as domain growth for 
the pure system is known to obey the Lifshitz-Slyozov growth law, ( R ) ( f ) - f ” 3 .  In 
figure 1, the data for the pure system are denoted by circles and show a linear behaviour, 
as expected from the Lifshitz-Slyozov growth law. Domain growth for the disordered 
case is also shown in figure 1 and the different amplitudes of disorder are marked by 
the denoted symbols. For very early times, the result for the case with disorder is the 
same as that without disorder. This corresponds to the time regime in which the domains 
are small so that the growth is unaffected by the disorder. However, there is a rapid 
crossover to a regime in which the growth is ditferent from that of the pure Case. Tine 
onset of this crossover is earlier for larger amplitudes of disorder. We have attempted 
to fit the domain growth for the disordered case to a power law form as (R)(t)-t’. 
However, it is not possible to fit the domain growth to a power law form over extended 
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Figure 1. Plot of (R)(r)' versus t (where (R)( l )  is the characteristic length scale at update 
time 1 )  for the pure case (marked by circles) and the disordered case with disorder 
amplitudes C =0.3 (U), 0.4 (A), 0.5 (0). 

periods of time. Thus, we believe that the domain growth for the disordered binary 
alloy is non-algebraic. 

As we remarked earlier, the generic growth law for growth that is governed by 
barrier hopping is expected to be of the form (R)(f)-(ln 1): where x is the growth 
exponent. Figure 2 shows the effective exponent x versus 100/1 for the data from figure 
1 (excluding, of course, the data forthe pure case). An estimate of the effective exponent 

3.0 

X 2 . ~  2.0 

b 

1.5 P 

0 .02 . 0 4  .06 . 0 8  .10 

10o/t 
Figure 1. Plot of effective exponent x versus lOO/l. The effective exponent is the instan. 
taneou~ slope of the plot In((R)(l)) versus I n ( h  1 )  for the results with non-zero disorder 
from figure 1 .  The different disorder amplitudes are denoted by the same symbols as in 
figure 1.  
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is obtained as the effective slope of the curve obtained by plotting In((R)(t)) versus 
In(ln t ) .  The asymptotic value of the effective exponent should give the true value of 
the exponent. However, it is clear from figure 2 that the effective exponent shows a 
systematic upward trend and does not saturate out within the maximum time of our 
simulation, namely 10 000 updates. To demonstrate the difficulty of extracting the 
asymptotic exponent, figures 3 ( a )  and 3 ( b )  plot, respectively, (R)(t) versus (In r) ' I2 
and (R)(t) versus (In I)' for the data from figure 1 .  Figure 3 ( a )  demonstrates that the 
higher vaiues of disorder are described weii by the domain growth iaw ( I? ) (  t i  - (in t ) ' I2 .  

However, figure 3 ( b )  indicates that the appropriate domain growth law for lower 
disorder amplitudes is more like (R)(f)  - (In t ) 3 .  Thus our numerical results are not 
conclusive in this regard. At most, we can only say that the form (R)(r)-(ln I ) ~  (with 
x increasing with decreasing disorder amplitude) provides a reasonable fit to our 
numerical data. Of course, it is possible that our simulations are not yet in the asymptotic 
rpn:...n A -  . . .n+rar . .~~o~+  +I.- u--I- .."__.._ - - * ~ L ~ - - I - . ~ - . L . .  .L ,"6",,C. n u  P , . I I I I L C L  "L La",, L . l S  ,LU"'-"CLLlrJ a L ~ u " 1 G L L L  L", l C l ( i l G i J  L L L F  &,ruwrrr G:npur,ent 
x to two static exponents, namely the roughening exponent and the pinning energy 
exponent. Thus, the asymptotic growth exponent should not depend upon whether the 
order parameter is non-conserved or conserved. However, we do not see the growth 
law (R)( 1 )  -(In 1)' in our simulations for the disordered binary alloy. 

S Puri and N Parekh 

/. 
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I I " t  15'2 I i n t 1 3  

Figure Nu). Plot of ( R ) ( I )  versus (In 1)'/' for the 
data from figure 1. We use the same symbols as in 
figure 1 to denote the different disorder amplitudes. 

Figure yb). Plot af (R)( l )  versus (In 1)' for the data 
from figure I .  Again, we use the same symbols as in 
figure 1 to denote the different disorder amplitudes. 

We have also performed simulations for disorder amplitudes which are both smaller 
and larger than those shown here. For smaller values of disorder, the domain growth 
is indistinguishable from the pure system for all times before the finite size effects 
become important. This is because the noise amplitudes are large enough that the 
disorder barriers do  not act as an obstacle to domain growth over the time-scale of 
observation. For disorder values larger than those shown in the figures, domains freeze 
into metastable states too soon and d o  not enable us to observe an extended period 
of domain growth. Clearly, at lower noise amplitudes, one could see non-algebraic 
growth effects at smaller disorder amplitudes than those shown here. However, at the 
same time, the disorder amplitudes at which freezing effects plague our simulations 
are also reduced, Thus, there is a narrow window of disorder amplitudes (dependent 
on the noise amplitude) in which we can observe non-algebraic domain growth Over 
an extended period of time. 
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Finally, we consider the scaled structure factors. We have confirmed (not shown 
here) that the scaled structure factor for each value of disorder shows dynamical scaling 
over extended periods of time. Figure 4 ( a )  is a plot of S(k, f)(k)(t)* versus k / ( k ) ( t )  
for data from different disorder amplitudes (denoted by the symbols shown). It is clear 
from figure 4 ( a )  that the universal structure factors for different disorder amplitudes 
are the same as that for the pure system case. Figure 4 ( b )  plots In(S(k, f ) ( k ) ( r ) ' )  versus 
k/(k)(f) for data from figure 4 ( a ) ,  so as to  clarify the tail structure. The coincidence 
of the universal structure factors is seen to extend even to the tail region. We have 
seen a similar super-universality for the case with non-conserved order parameter [ S I .  
It is a consequence of the fact that the structure factor is the statistical property of a 
set of sharp, random interfaces and is independent of the fashion in which these 
interfaces are obtained. 

10 

'", 
Y 6  " - 

- 4  
Y 
I 

V I 2  

1 4  l o  

k / ( k )  k / ( k )  

Figure Yo). Plat of the scaled structure factors 
S(k, r ) ( k ) ( r ) '  versus k / ( k ) ( f )  for the pure case at 
time f=6000 (marked bycircles); and for thedisor- 
dered case with disorder amplitudes C = 0.3.0.4.0.5 
all at time f = 10 000 (symbols as in figure I ) .  The 
structure factors are obtained as statistical averages 
over runs from 20 different initial conditions for each 
of 20 different disorder configurations. 

Figure q b ) .  Semi-logarithmic plot of the scaled 
SlNCfure facton from figure 4(a), i.e. plot of 
In(S(k, f ) ( k ) ( f ) ' )  versus k/(k) ( i ) .  The symbol used 
are the same as in figure 4 ( 0 ) .  

4. Summary and discussion 

!fi this paper we hzyp pre~efited d&i!ed fiumerica! res=!!$ from 1 re!! Avnnmir-l -.i ..I ....- I. 
system (CDS) study [ 2 ]  o f  domain growth in binary alloys with quenched disorder. We 
started off from a coarse-grained Hamiltonian which incorporates the effects of 
quenched disorder by assigning a spatial dependence to the coefficients of the various 
order parameter-dependent terms. This Hamiltonian can be used to describe the 
dynamics of magnets with quenched disorder (via a TDGL equation) and the dynamics 
of binary alloys with quenched disorder (via a generalization of the Cahn-Hillard-Cook 
equation). We did not integrate the resulting partial differential equation directly but 
rather used a computationally efficient CDS model which was equivalent to the partial 
differential equation. The enhanced numerical efficiency enabled us to perform exten- 
sive simulations of the effects of quenched disorder on domain growth in binary alloys. 
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Our numerical results consisted of two important observations. Firstly, we were 
able to establish the existence of a unique length scale that characterizes domain 
growth, even in disordered binary alloys. We were also able to confirm that this 
characteristic length scale did not have an algebraic dependence on time. We then 
attempted to fit it to a law of the type (R)(t)-(In f)I (motivated by theoretical 
considerations) but our numerical results were (at best) able to extract an effective 
exponent which increases from 2 to 3 with decreasing disorder amplitude. It is possible 
that the asymptotic growth iaw is actuaiiy ( R ) ( t )  - (in i)A for aii ampiitudes of disorder 
(as predicted in the non-conserved case [6]) but our numerical results did not access 
a time regime in which this was true. Secondly, we were able to clearly demonstrate 
numerically that the scaled structure factor was independent of the value of disorder 
and was actually the same as that in the pure case. We had earlier demonstrated this 
to be true in the non-conserved case also [SI. 

The results presented here are part of a larger project to investigate the effects of 
quenched disorders on domain growth using coarse-grained CDS models. Previous 
studies have consisted of Monte Carlo simulations and have not been able to make 
quantitative predictions (with one exception [13]) regarding the nature of the domain 
growth law and the super-universality of the scaled structure factors. We have also 
completed a study of ordering and phase segregation kinetics in the presence of 
quenched random fields and will present these results elsewhere [14J It is our belief 
that, as in the pure case, coarse-grained models will be considerably niore successful 
than Monte Carlo models in elucidating the nature of domain growth in disordered 
systems. 
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